Supporting World Class Science

Peter James, Director
(Previously Professor of Environmental Management, University of Bradford)

www.effectivelab.org.uk

GOLD SPONSORS:

PLATINUM SPONSORS:

SUPPORTORS:
Lab energy, environmental impacts

• Many are evident and can be tackled directly
 - air quality, chemicals, freezer good practice, fume hood sashes, local equipment sharing, recycling & waste, transport, water etc.

• Many key ones are indirect and not obvious to users:
 - Provision and use of space
 - The ventilation systems behind the fume hood
 - Strategic provision and overall use of equipment
 - Staff productivity and lab procedures/workflows
UK Science Funding

• Direct state support for universities/specialist institutes
 - core based on students & research/teaching ranking
 - specific, generally for science buildings & infrastructure
 - Higher Education Funding Council for England (HEFCE)
• Tuition/postgrad fees (with some extra public support)
• Research Councils – ‘hands off’ competitive bidding
• Foundations, especially Wellcome as a funder/operator
• Targeted public funding – environment, health etc.
• Contract research
UK Drivers for Lab Resource Efficiency

• Funding pressures: more from less
 - 2010 Wakeham Review of Research Councils – URL
 - 2011 & 2015 Diamond Reviews of HE – URL and URL

• Carbon/energy demands
 - Demanding energy and other requirements
 - Collective HE target of 43% CO2 cut 2005-2020 URL

• High and rising costs
 - electricity 20c per kWh or more
 - land $600,000 per acre (over 2x NYC, 7x Denver)
Mechanisms (All Non Environmental)

- Research Councils [URL](http://example.com)
 - 2011-15 target of c $600m savings (3-5% pa)
 - Linking overhead cost recovery to efficiency levels
 - Part funding equipment to encourage sharing
 - Other measures (guidance, procurement etc.)

- HEFCE: Transparent Approach to Costing (TRAC) [URL](http://example.com)
 - Full economic costing of all research projects
 - Avoidance of cross subsidy
 - Random audits
Research Councils – Efficiency Rating

• All research organisations placed in 5 Efficiency Groups, based on:
 - absolute level of indirect costs
 - improvement over the previous year
• A varying ‘penalty’ deduction from indirect cost figures
 - 0-6% in year 1 to 0-18% in year 3+
• Initially only applied to non facilities element of indirect costs
• URL
Research Councils – Equipment Costs

- Full economic costing: Example [URL]
- Only part funding of most equipment
 - under $15,000 treated as direct costs, typically an automatic RC contribution of c 80%
 - $15,000 to $170,000 standard justification, up to 50%
 - over $170,000 science/business case, up to 100%
- Encouraging equipment sharing HE consortia
 - standard inventories
Research Councils – Next Steps?

- More benchmarking
 - equipment performance and use, space utilization
- More focus on facilities efficiency as well as equipment
- Lab/dept efficiency assessment
 - LabRats type Green Lab assessments as a foundation?
- Internal sharing of smaller equipment items & chemicals
- Common standards for more data exchange
- Recommended norms and guidance
- Procurement agreements and bulk purchasing
Some Other Points

- Salix Finance provides perpetual loans for ‘revolving green funds’ as per Harvard model [URL](#)
- University of Cambridge has a proxy energy devolution scheme with annual consumption targets for Schools and rewards/fines for good/bad performance [URL](#)
- National Union of Students has incorporated the S-Lab Environmental Assessment Framework into its popular ‘Green Impact’ audit scheme [URL](#)
Conclusions

• Much ‘hidden’ environmental improvement potential - best addressed without too much of a ‘green’ hat?
• Align with good science + organizational agendas - ‘Win win’ actions, Good Laboratory Practice
• Capture ‘hidden’ knowledge e.g. maintenance, technical
• Align carrots and sticks with control and motivation
• Think holistically about equipment: not just databases
• Target big change as well as routine processes